On a more accurate Hilbert's type inequality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a more accurate multiple Hilbert-type inequality

By using Euler-Maclaurin's summation formula and the way of real analysis, a more accurate multipleHilbert-type inequality and the equivalent form are given. We also prove that the same constantfactor in the equivalent inequalities is the best possible.

متن کامل

on a more accurate multiple hilbert-type inequality

by using euler-maclaurin's summation formula and the way of real analysis, a more accurate multiplehilbert-type inequality and the equivalent form are given. we also prove that the same constantfactor in the equivalent inequalities is the best possible.

متن کامل

On a more accurate Hardy-Mulholland-type inequality

By using the way of weight coefficients, the technique of real analysis, and Hermite-Hadamard's inequality, a more accurate Hardy-Mulholland-type inequality with multi-parameters and a best possible constant factor is given. The equivalent forms, the reverses, the operator expressions and some particular cases are considered.

متن کامل

On a more accurate half-discrete Hilbert’s inequality

* Correspondence: qlhuang@yeah. net Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, People’s Republic of China Abstract By using the way of weight coefficients and the idea of introducing parameters and by means of Hadamard’s inequality, we give a more accurate half-discrete Hilbert’s inequality with a best constant factor. We also consider its best ex...

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematical Forum

سال: 2007

ISSN: 1314-7536

DOI: 10.12988/imf.2007.07162